

3 SPACE EXPLORATION CONFERENCE & EXHIBIT

Expandable Habitat Structures for Long Duration Lunar Missions

Phil Spampinato
Manager Space Products, ILC Dover LP

February 27, 2008

Habitat Classification

Habitat Construction Classes

Pre Integrated (Hard Shell)

Pre-Fabricated (Expandable or Assembled)

• In-Situ Resource Construction (Caves, Lunar Concrete, etc.)

Technical Challenges for Lunar Habitation

Structural Challenges

- Mass (structure, launch systems, etc.)
- Volumetric Efficiency (ratio of launch volume to deployed volume)
- Leak Detection / Health Monitoring
- Dust Mitigation
- Radiation Protection
- Equipment Interfaces
- Human Interface
- Thermal Regulation
- Handling / Moving
- Couplings between modules
- Uneven terrain

Recent Developments in Lunar Habitats

Recent Development Efforts

Modeling & Analysis

Testing in Laboratory Environments

Testing in Analog Environments

Leveraging Proven Expandable Technologies

Space Systems

LAT Driven Habitat Dev't

Lunar Habitats

Terrestrial Systems

Intelligent Flexible Materials (InFlex)

Structural Health Monitoring & Leak
Detection

Enhanced Radiation Protective Materials

Using Multi-functionality to reduce mass and improve safety

Signal Transfer Systems (wireless & wired)

Exploration Applications

Self Healing Bladder Materials

Anti-Microbial Materials

Localized Power Generation & Storage

Low Permeation Materials

Expandable Lunar Habitat Demonstrator

Studies:

- Packing & Deployment
- Crew Interface
- InFlex Materials Integration (HMS, etc.)
- Hardware Interface (doors, windows, lights, etc.)
- Manufacturing
- Acoustical
- Outfitting
- Analog Test (DRATS)

Antarctic Habitat Demonstrator

Antarctic Habitat Demonstrator

- NASA / NSF / ILC Dover Innovative Partnership Program (IPP)
- Test of expandable structures in Antarctic Analog to advance NASA knowledge base for lunar application
- Test of expandable structures to advance NSF knowledge and assess applicability to polar missions

System Requirements (NASA & NSF Combined) - Annotated

- Reconfigurable components
- Erected by 4 people in 4 hours
- Can withstand 100 mph winds
- · High Packing Efficiency
- Can deploy on uneven ground
- · Withstand the Antarctic winter
- Multiple cycle use
- Lighting/power/data acquisition
- Meet NSF building codes

Antarctic Habitat Demonstrator Study Goals

Large Expandable Structures:

- Packing efficiency & shipping/handling survival
- Deployment operability in a gravitational environment and in polar gear (representing space suits)
- Adaptability to uneven and rugged surfaces representing the lunar surface
- Reconfigurability
- Ongoing Performance in a harsh environment
- Partial Deployment with integrated electronics (power, lighting, sensors, etc.)
 - Remote structural health monitoring over long periods of time
 - Use of in-situ materials for shielding from radiation
 - Lunar dust mitigation practices

Packing, Shipping & Deployment Studies

Achieved a packing efficiency of 15:1 (packed to deployed volume)

Survived truck (DE to CA), Ship (CA to NZ), C17 (NZ to McMurdo)

Deployed by 3 people in ECWG in under 50 minutes (11 min inflation)

Reconfigurability Studies

Connections between sections were simple in ECWG + demonstrated reconfigurability

The system adapted well to the uneven ground due to compliant interfaces and structures

Packed & deployed system dozens of times

Radiation Protection Studies

Researching ways to apply regolith to the walls of a structure for radiation shielding

Fill bags attached to structure

Blankets

Flexible PE blankets applied where required

Bags

Push regolith on deflated structure, inflate structure, capture regolith on walls

Regolith Lifter

Dust Mitigation Studies

Conceptual solution for EVA suit dust covers

Protective Covers

- Keep dust off the suit
- Keep dust from entering the A/L & Hab
- Reusable
- Applicable to robotics
- Enhance safety & improve logistics
- Applicable to Mars

Summary

 Laboratory and Analog testing is providing useful data to guide system development

Advanced flexible materials and embedded sensor technologies are maturing

 Technology development timelines coincide with LAT needs

